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Abstract - In this paper, we propose a distributed approach for 

the least constraining slot allocation scheme in all-optical TDM 

networks (LC) that was introduced in a previous work. The 

driving force behind our proposal is the employment of the LC 

scheme in a GMPLS context. After describing the basic data 

model and messaging parameters, we focus on defining an 

efficient LC resource status update scheme, which is essential to 

achieve compatibility with GMPLS’ periodic link state update 

standards. Basically, we reduce the rate of resource status 

updates from once per call to once per few calls, and measure 

the impact on network performance.   

 

I.   INTRODUCTION 

 

In a previous work [1], we proposed the least constraining 

slot (LC) scheduling scheme as a novel slot reservation 

approach in all-optical TDM mesh networks without 

buffering [2,3], which are synchronized on slots without 

synchronization of frame boundaries. Thus, a time sliced 

traffic segment that travels a route consisting of several links 

may be carried by slots that have different positions within 

the frames on the respective links. LC reduces call blocking 

in these networks to an optimal rate close to what can be 

achieved with full buffering. The “constraint” in LC is the 

number of fixed routes that might use a time slot at a given 

point in time. The algorithm selects the least constraining 

slots on the route, hence the name “least constraining slot”. 

Comparing its performance to the first fit (FF) approach [2], 

and FF with optical timeslot interchangers (OTSI) [4], the LC 

approach provided a performance gain close to the FF 

approach with OTSI, but at a reduced complexity close to FF 

without OTSI. The reported gain was consistent under 

uniform and non-uniform traffic distribution. In addition, we 

found that the LC approach outperformed the least loaded 

(LL) approach in multi-fiber environments [5]. Thus, LC 

proved to have an edge over LL, since the former is not 

restricted to multi-fibers networks as is the latter. As a 

general conclusion of our previous study, the LC approach 

provided close to optimum performance in optical TDM 

networks with no buffering. 

In this paper, we propose a distributed solution for the least 

constraining slot reservation scheme. Our aim is to employ 

LC in a Generalized MPLS context [6]. We define the nodal 

database and basic parameters to be added to GMPLS’ 

reservation and signaling messages. To comply with GMPLS 

periodic link state updates, we intend to reduce the LC 

resource status update rate to a level that matches GMPLS 

standards and still maintains close to optimum performance. 

In the subsequent sections, we review the LC algorithm and 

describe the elements of our distributed scheme and how it 

complies with GMPLS. Before concluding this work, we 

discuss the effect of reducing the rate of resource status 

updates on the network performance.  

 

II.   LC ALLOCATION SCHEME 

 

Before describing the basic steps of the LC approach, we 

should clarify the nomenclature used in [1] to provide a better 

understanding of the presented concepts. Route, route-slot 

and link-slot are essential concepts used in describing the LC 

approach. 

A network route is a series of unidirectional links 

interconnected through intermediate nodes from a given 

source node to a given destination node. Two routes are 

considered intersecting if they have at least one link in 

common. A node transmits data into a link in the form of 

repeating frames of N equal timeslots. Due to link 

propagation delay, frame alignment is not preserved along the 

route. Considering link AB, a traffic segment forwarded on a 

given timeslot at egress node A might be intercepted on a 

different timeslot at ingress node B. Thus, a timeslot is better 

identified with reference to a link; we use the term link-slot 

ABx to describe timeslot x on link AB. There is no need to 

mention the corresponding wavelength since only one 

wavelength plane is considered in this study. Formally 

speaking, a link-slot is a timeslot on a link with reference to 

the local clock of its egress node.  

In general, a transmitted traffic segment from source node S 

to destination node D travels through different links along a 

fixed route, and hence occupies a series of different link-slots. 

For instance, if A and B are two intermediate nodes between S 

and D, a series of link-slots would be described as SAx ABy 

BDz. Knowing the delay of each link, an intermediate link-

slot UVj corresponds to a source link-slot SAi according to the 

general rule ( ) Nmoddij SU+= , where dSU is the total 

delay of all links from node S to node U. Thus, knowing the 

fixed route between a source-destination pair and all 

associated link delays, we can easily derive the entire series 

of link-slots for a given link-slot at the source. In this case, 

we describe the series SAx ABy BDz with the simple 

notation xSD , which we call a route-slot. The upper bar is 

essential to differentiate it from a link-slot. A route-slot 

xSD is considered available if all its constituent link-slots are 



available; otherwise, xSD is unavailable. In a single fiber 

environment, a link-slot is available if it is not reserved. On 

the other hand, in a multi-fiber case, a link-slot is available if 

it is free for at least one of the link fibers. To make our 

approach generic, we develop it based on a multi-fiber 

environment, and apply it to a single-fiber network as a 

special case.  

The exercise of allocating resources, for a communication 

request, from node S to D is to find and reserve an available 

route-slot xSD along a fixed route, which is assumed to be 

given.  

 

A.   Definitions 

If a link-slot XYj is part of a route-slot iSD , we write:  

 

( ) Nmoddijwhere,SDinXY SXij += .        (1) 

 

Considering M fibers per link, we define the link-slot 

availability
j

XYΑ , an integer between 0 and M, to be the 

number of fibers on which XYj is free. If 
j

XYΑ is equal to 

zero, then XYj is unavailable. Furthermore, we define the 

availability 
i

SD
Α of a route-slot to be equal to the minimum 

availability
j

XYΑ among its constituent link-slots, 
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Knowing the associated fixed route of each source-

destination pair, we derive the set Ω of all possible route-slots 

in the network. We define 
j

XYΩ to be a subset of Ω 

consisting of all route-slots that contain link-slot XYj.  
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We further define 
j

XY'Ω to be a subset of 
j

XYΩ consisting 

of all route-slots whose availabilities are equal to
j

XYΑ . 
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The purpose of 
j

XY'Ω is to identify all route-slots whose 

availabilities are decremented when XYi is reserved.  

We designate the constraint of link-slot XYi to be the sum 

of the availabilities of all route-slots belonging to
j

XYΩ . 
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In a single fiber environment, 
i

SD
Α becomes a binary 

variable showing whether the route-slot is available (1) or not 

(0); and hence, 
j

XYW would reflect the number of available 

route-slots containing XYj. In other words, it indicates the 

number of routes that can potentially use the designated link-

slot. 

Last, we define the constraint of a route-slot to be equal to 

the total constraint of all its constituent link-slots:  
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B.   Allocation Principle 

It is essential to reserve a link-slot which has the lowest 

interference with other intersecting route-slots, i.e. having the 

lowest constraint. This keeps more available route-slots in the 

network, hence improving the blocking rate for subsequent 

communication requests. Thus, the route-slot that has the 

lowest constraint 
i

SD
W would be the best choice on a given 

route between S and D. In this case, only a minimal number 

of route-slots in the network become unavailable when 

serving a given call. 

 

C.   Constraint Update 

After identifying the best route-slot, all constituent link-

slots are reserved. Consequently, the constraint of each link-

slot in each route-slot in 
i

XY'Ω is modified according to the 

algorithm, shown in Fig. 1. 

 

 

 
 

Fig. 1: Constraint update algorithm 

 

By definition (4), 
j

XY'Ω contains all route-slots whose 

availabilities are decremented due to a reservation of XYj. For 

instance, when reserving XYj in a single fiber environment, all 

route-slots in 
j

XY'Ω become unavailable, and accordingly, 

their availabilities flip from 1 to 0. Therefore, the constraint 

of their constituent link-slots must be decremented since a 

link-slot constraint is the sum of the availability of the 

intersecting route-slots.  

Finally, the same algorithm is repeated when freeing 

resources, but the constraints are increased instead.   
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III.   DISTRIBUTED APPROACH 

 

 Aiming to make the LC scheme applicable in a GMPLS 

context, we should define a distributed algorithm that blends 

well with GMPLS protocols. In GMPLS, each node has a 

database and exchanges link state information via update 

messages based on the Open Shortest Path First (OSPF) [7] 

or Intermediate System to Intermediate System (IS-IS) 

routing protocols [8]. For connection reservation, GMPLS 

uses the Resource Reservation Protocol with Traffic 

Engineering (RSVP-TE) [9] or the Constraint-Based Routing 

Label Distribution Protocol (CR-LDP) [10]. Both reservation 

protocols require two phases: label request phase issued by 

the source node and label response phase issued by the 

destination.  

The distributed LC approach requires three major 

components: a database schema at each node, a reservation 

protocol, and a link state update protocol. 

 

A.   Node Database 

Each node in a network employing the distributed LC 

approach maintains a database containing basic information 

essential for the decentralized reservation process. Basically, 

for each outgoing link XY at a node X, two lists must be 

maintained: Links Info List (LIL) and Link-Slots Info List 

(LSIL). LIL has entries for each link in the network that 

shares a route with XY. A LIL’s entry corresponding to link 

UV has the following structure: 

� Total delay d in timeslot unit between nodes U and X. if 

U is upstream from X, the delay is a positive integer; 

otherwise, the delay is a negative.   

� Common Route-Slots List (CRSL) containing entries for 

all route-slots that have link XY and UV in their paths. 

Each CRSL’s entry stores the route-slot’s availability and 

a set of constituent link-slot ids. 

LSIL has an entry for each link-slot on XY, which contains 

the following data: 

� Availability  

� Constraint  

 

B.   Reservation process 

Although the aim is to extend the existing RSVP-TE or 

CR-LDP protocols, we define a new set of messages that can 

be integrated later with the corresponding messages in these 

protocols just to avoid lengthy technical discussions that go 

beyond the scope of this paper. The distributed LC approach 

uses the following messages during the slot reservation 

process: 

� Request (REQ): it contains source and destination node 

ids, the cumulative delay, and a route-slot information list 

(RSIL) which has the same structure as an LSIL. The 

content of the REQ can be integrated with RSVP Path 

message. 

� Response (REP): it contains source and destination node 

ids, a selected route-slot, the cumulative delay, and a 

link-slot availability list (LSAL) indexed by link-slot. 

The LSAL contains the availabilities for a selection of 

link-slots. These parameters can be integrated with RSVP 

Resv message. 

� Release (REL): it contains destination node id, and a 

link-slot. It can be integrated with RSVP Resv Teardown 

message. 

� Negative Acknowledgment (NACK): it is used to inform 

the source of a denied request. This acknowledgment can 

be realized by using RSVP Path Error message. 

During a reservation process, the following steps are 

performed:  

1. The source node sends a REQ to the destination on a 

predetermined route. It initially sets the REQ’s RSIL to 

the outgoing link’s LSIL. 

2. An intermediate node receives the request message, and 

performs the following steps before forwarding the 

received message to the next node on the route: 

i. Identify matching link-slots on the outgoing link by 

using the cumulative delay in the REQ. 

ii. Add the link-slot constraints in the outgoing link’s 

LSIL to the corresponding route-slot constraints in 

REQ’s RSIL.  

iii. Set the availability in each entry of the RSIL to the 

availability of its corresponding link-slot only if the 

latter value is less than the former.  

iv. Add the corresponding delay d in the LIL to the 

cumulative delay in the REQ. 

3. When a destination node receives the REQ, it sends a 

REP to the source node after setting the REP’s route-slot 

field to the lowest weighed route-slot in the REQ’s RSIL. 

It also sets the REP’s cumulative delay to the REQ’s 

cumulative delay. 

4. When an intermediate node receives the REP, it does the 

following before forwarding the received REP to the next 

node on the reverse route to the source. 

i. Deduct the corresponding delay d in the LIL from the 

REP’s cumulative delay. 

ii. Identify and lock the link-slot that matches the 

selected route-slot by referring to the cumulative 

delay. 

iii. Insert the availability of the corresponding link-slot 

to the REP’s LSAL 

When the REP message reaches the source node, the node 

starts transmitting on the reserved route-slot. After  

completing the communication process, the source sends a 

REL message towards the destination to free all resources, 

which were locked for serving the communication request.  

A request for communication can be rejected either during 

the REQ phase or the REP phase. If no matching resource is 

available during a REQ phase, the REQ message is dropped 

and a NACK is sent back to the source. In this case, the 

connection is considered blocked. On the other hand, if two 

REPs on two intersecting routes require the same available 

link-slot on the intersection link, the corresponding 

intermediate node locks this link-slot to the first arriving REP 

and drops the late one. It sends a NACK to the source of the 



dropped REP and a REL to its destination in order to free the 

locked resources. In this case, the connection is not 

considered blocked since the source node can retry with 

another REQ. Further details on the rejection scenarios during 

the REQ and REP phases can be found in [11]. 

   

C.   Resource Status Update 

With every established or released connection, the 

constraints and availabilities of corresponding resources 

change across the network. Therefore, a resource status 

update scheme is required to keep the databases of all nodes 

up to date. An update scheme can be instant or periodic. An 

instant update is broadcasted by the source node upon route-

slot’s reservation or release. On the other hand, a periodic 

update is frequently broadcast by all nodes like the OSPF link 

state update mechanism. In both update schemes, we employ 

an update message (UPD) similar to the OSPF Update 

message. However, we append an LSAL as an extra 

parameter. 

While simulating irregularities and errors in the centralized 

scheme, we explicitly forced our simulated algorithm to skip 

the constraint update module for n successive calls before 

executing it at the 1
rst

 call after n. We noticed that network 

performance remained close to optimum for relatively large 

n. It basically means that one resource status update every t 

period of time could maintain close to optimum performance 

and significantly reduce the associated signaling cost.   

 

Instant Resource Status Update 

  The following steps occur during an instant resource status 

update process:  

1. The source node notifies all nodes in the network about 

the reservation of link-slots by broadcasting a UPD 

message containing the LSAL that was originally carried 

by the REP.  

2. Each node receiving the notification performs the 

following steps for each reserved link-slot in the LSAL: 

i. Identify the outgoing link that shares a common 

route with the reserved link-slot if any, by referring 

to the LIL. 

ii. Identify the corresponding local link-slot by using 

the total delay from the reserved link’s upstream 

node to this local node. 

iii. Identify the route-slot joining the reserved link-slot 

with the corresponding local link-slot. This can be 

achieved by referring to the CRSL. 

iv. If the availability of the route-slot identified in the 

CRSL is equal to the availability of the reserved link-

slot, reduce the route-slot availability and the 

constraint of the corresponding local link-slot. 

 

Periodic Resource Status Update 

In order to implement a periodic resource status update, the 

following steps are essential: 

1. At a fixed time interval t, every node in the network 

compiles an LSAL and appends it to a UPD message 

before broadcasting it to the network. A compiled LSAL 

contains only link-slots availabilities whose values have 

changed since the previous notification.  

2. Each node receiving the notification performs the 

following steps for each link-slot in the LSAL:  

i. Process the first 3 steps of the instant update case.  

ii. If receiving the first notification for a particular route-

slot after the down period t, set the availability of the 

route-slot identified in the CRSL to the availability of 

the considered link-slot. Otherwise, execute this step 

only if the link-slot’s availability is the lowest of both 

values. Depending on the resulting change ∆ in the 

route-slot availability, the constraint of the 

corresponding local link-slot should change 

accordingly. If ∆ is positive, increase the link-slot 

constraint by ∆; otherwise, decrease it by |∆|. 
 

IV.   SIMULATION RESULTS 

 

In this section, we discuss the performance of the 

distributed LC approach under various status update rates. 

Our observations are based on simulation results plotted with 

95% confidence intervals.  

The simulation experiments are based on the 14-nodes 21-

link NSFNET network topology [12]. A link between two 

nodes consists of dual unidirectional fibres with a fixed 

capacity of 10 timeslot channels per fibre. Fixed shortest path 

routing is used to derive paths between all source destination 

pairs. Each path serves up to 10 concurrent connections at the 

granularity of a transmission channel, i.e. one timeslot per 

link along the path. Each simulation is repeated for 30 runs. 

Calls arrive according to a Poisson process, and lasts for an 

exponentially distributed period. 

We study our scheme under two different traffic 

distributions among source-destination pairs, uniform and 

non-uniform. In the uniform traffic case, every pair is chosen 

at random with equal constraint and hence having the same 

traffic load in Erlang (mean arrival rate × mean holding time). 

In the non-uniform case, source-destination pairs have 

different constraints to achieve non-uniform traffic 

distribution.  

Fig. 2 shows the performance of the LC approach for 

different status update rates. Best performance is obtained for 

instant updates, that is, an update after each accepted or 

terminated call. In the case that an update is only done after 

10
5
 new accepted calls, we obtain what we call “degraded 

performance”; this performance is approximately one half of 

the best-performance level that is attained with instant 

updates. Performance remains at that degraded level even if 

we increase the update rate to once per 10
2
 calls arriving to 

the network. However, if the update rate is once per 10 calls, 

we obtain best performance as in the case of instant updates. 

As a generalization, we consider that the performance is 

unaffected if the update rate is greater than or equal to λ/α  

where λ is the call inter-arrival rate, and α is a coefficient 



related to the network size which is close to 10 for the 

NFSNET.  

Fig. 3 is a chart that shows samples of blocking probability 

collected over several short periods of 10 calls each. To 

reduce statistical variations caused by sampling over short 

periods, the same simulation is repeated 10000 times with a 

high load of 120 Erlang. The employed status update rate is 

once per 500 calls after an initial period (not shown in the 

diagram) of instant updates. We notice an initial transition 

period of gradual performance degradation reflected in the 

early samples. The transition is from the best-performance 

level to the degraded performance level. The first couple of 

samplings are close to the best performance rate of 0.027. If 

we average out the statistical variations after the transition 

period, the worst performance rate seems to stabilize at a 

fixed level of 0.035 on average. The chart also shows that 

subsequent (single) status updates do not reproduce the best 

performance rate observed earlier. To discuss these results 

further, we define the following:  

- ωt: is the list of all recorded route-slots constraints in the 

network. The constraint values are based on link-slot 

constraints that are recorded in nodal databases. 

- ώt: is the list of all actual route-slots constraints in the 

network. The constraint values are based on actual link-

slot constraints that are not recorded in nodal databases. 

- Low(SD, ωt): is a function that returns the route-slot on 

route SD that has the lowest constraint  according to ωt. 

In the case of instant updates, ωt should always be equal to 

ώt at any time t; i.e. ωt = ώt, and hence  

Low(SD, ωt) = Low(SD, ώt) for all routes at any point in 

time. This equation is essential for a perfect route-slot 

allocation pattern and best network performance. Starting 

from a perfect LC allocation pattern and stopping all further 

updates, ωt and ώt would break ties after the first allocated 

or de-allocated call; and ωt is said to be outdated. However, 

the equation Low(SD, ωt) = Low(SD, ώt) might still hold for 

a majority of routes during the first few allocated or de-

allocated calls. As long as this equation holds for the routes 

at which all subsequent calls arrive, the system would 

allocate the same route-slots that would be chosen in the case 

of instant updates. Thus, the perfect LC route-slots allocation 

pattern in the network is maintained, and hence best 

performance is preserved. As soon as a call arrives at a route 

SD where Low(SD, ωt) ≠ Low(SD, ώt), the resulting 

allocation pattern becomes imperfect; and hence 

performance starts to degrade. The length of the best 

performance period preceding the degraded performance is 

given by α/λ. Note that α depends on the probability  

P/n(n-1); where n is the number of nodes in the network, and 

P is the probability of having Low(SD, ωt) ≠ Low(SD, ώt) for 

a given route SD (note that n(n-1) is the number of routes in 

the network). P is relatively small during the first few calls 

and increases gradually with every allocated or de-allocated 

call as each route-slot affects the constraints of its 

intersecting route-slots. During the best performance period, 

the constraints in ώt will always be based on a perfect LC 

allocation pattern. As a result, if (single) updates occur at a 

period shorter than or equal to the best performance period, 

ωt will always be based on a perfect LC pattern; best 

performance is continually maintained. On the other hand, if 

(single) updates occur at a longer period, ωt will most likely 

be based on an imperfect allocation pattern leading to 

degradation of performance. 

Regardless of the update rate, network performance is at 

the degraded level as long as the update interval is longer 

than the best-performance period. Note that if the route-slot 

allocation pattern becomes imperfect it reflects an imperfect 

ώt. After an update, ώt gets copied to ωt which would 

emphasize the pattern’s imperfection. Thus, further updates 

emphasize rather than fix imperfection; and hence, the 

irrelevance of update rates to the performance degradation 

level is now clear. 

Although the route-slot allocation pattern is imperfect, the 

performance level is still better than the performance level of 

the FF approach. Note that an outdated ωt still imposes an 

order that the system follows when allocating route-slots. 

This order is the result of the most recent LC update. It 

actually gives different priorities to the route-slots in all 

routes according to the constraints collected by the last 

update. Note that the resulting priority order for different 

routes is not arbitrary but rather synchronized based on the 

LC update. This synchronization between different routes is 

the essence behind the degraded performance level which is 

better than the worst case scenario of the FF approach. As an 

analogy, a synchronized traffic light system based on an 

outdated traffic pattern would still manage traffic better than 

a chaotic arbitrary system. 

In a multi-fibers environment, an imperfect route-slot 

allocations pattern can still produce a performance similar to 

what is obtained with a perfect pattern (see Fig. 4). The 

improved performance of an imperfect pattern in a multi-

fibers environment is mainly due to the additional number of 

fibers. Although P in a multi-fibers environment is smaller 

than in the single fiber case, it does not justify the difference 

in performance. Its effect will be limited to slightly increasing 

the perfection period. Regardless of this period, the pattern 

would eventually become imperfect after few calls without 

updates. However, the priority order that remains in effect 

still produces close to optimal performance as shown in Fig. 

4. Therefore, we conclude that network performance metrics 

resulting from imperfect and perfect allocation patterns 

converge as an effect of extra fibers.  

  

V.   CONCLUSION 

 

In a previous work, we proposed the least constraining slot 

reservation approach (LC) for all-optical TDM networks. In 

this paper, we designed a distributed LC scheme in an attempt 



to make it applicable in GMPLS networks. After specifying 

the node database, we defined new parameters that need to be 

added to the RSVP-TE or CR-LDP messages. In addition, we 

developed two different resource status update schemes: 

instant and periodic. The major challenge was to incorporate 

the LC resource status update into GMPLS, which relies on 

OSPF or IS-IS link state update mechanisms. Since GMPLS’ 

relies on global periodic updates, we have to skip a number of 

calls before invoking the LC resource updates. We showed by 

simulation that an update rate greater than or equal to λ/α 

maintains close to optimal performance; where λ is the call 

inter-arrival rate, and α is a coefficient related to the network 

size which is close to 10 in NFSNET. For lower update rates, 

performance degrades to a fixed level but does not converge 

to the worst performance level reported with the first fit (FF) 

approach; hence, stopping all subsequent updates throughout 

the network lifetime after a brief period of instant updates 

produces a performance level as good as any update rate less 

than λ/α. In multi-fiber environments, the update reduction 

has no significant effect on performance regardless of the 

rate. In this case, stopping the instant updates at an early stage 

of the network operation does not affect performance, and 

hence the associated signaling bandwidth is spared. As a 

general conclusion, the distributed LC scheme produces a 

close to optimal performance in a GMPLS optical TDM 

network after slightly extending the reservation protocol and 

not changing the rate of link state updates.  
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Fig. 2: LC performance for different update rates (once per 1E+x calls) 
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Fig 3: LC performance measured every 10 calls – load is 120 Erlang – 

 (update rate is once every 500 calls) 
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Fig. 4: LC performance for different update rates (once per 1E+x calls) 

in a 3-fibers network 


